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The analysis of the NRTL equation is carried out in the work with respect to its applicability 
to the correlation of equilibrium data of systems with large positive deviations from Raoult's law. 
The influence of parameter IX is discussed in detail and its limiting values are determined. The 
generalized values of IX can be applied only to weakly non-ideal systems. A new method for their 
estimation is suggested. In comparison with the Redlich-Kister equation the NRTL equation 
allows higher values of the logarithms of activity coefficients (by about 0·13) for more symmetric 
systems (.; < 0·2) and can be used in some cases even for considerably asymmetrical systems 
where the Redlich-Kister equation fails altogether. But just like the Redlich-Kister equation 
(for.;> 0·29) it is not able to represent the monotone decreasing course of the ratio of activity. 
coefficients for.; >0·31 and simultaneously the convex course of ;P~fox'f. 

In a foregoing paper1 the concentration dependences of quantities Ql = 

= o[~EJ(2·303RT)]fox 1 and Gll = o2 [~/(2·303RT)]foxi were investigated in case 
of the Redlich-Kister equation for different values of x0 and ( Gll )xo in systems with 
large positive deviations from Raoult's law. 

With regard to the course of ~E andfor Ql the "normal courses" of the following 
functions were defined: 

1) The curve Ql is a monotone decreasing function in the concentration interval 
(0; 1), 

oQ1jox 1 < o. (1) 

2) The molar excess Gibbs energy is positive in the concentration interval (0; 1), 

~E > 0. (2) 

Part LXVI in the series Liquid--Vapour Equilibrium; Part LXV: This Journal 39, 1246 
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1944 Novak, Suska, Matous: 

3) The curve Gll(x 1) is convex in the whole concentration range, 

(3) 

4) In case of a non-convex course of Gll(x1) it is required the curve to show only 
one extreme in x 1 E (0; 1). This can be expressed by the relation 

If this condition is fulfilled the only extreme is warranted on the curve Gll(x1) 

at the point x 1 = x0 '(and a minimum on the assumption that (Gllll)x,=xo > 0) as 
well as a point of inflexion with the zero line slope at a certain point x1 = X

8 
(on the 

assumption that (8 3 Glljoxf)., =xo =!= 0). On considering still more extreme condi
tions, the point of inflexion could turn into a further local minimum which .can be 
a more expressive and deeper one than the minimum at the point x 0 • These extreme 
cases will not be considered further in detail. 

The aim of the calculations undertaken was to judge for the Renon-Prausnitz 
equation2 (further NRTL only): How the equation reflects changes in x0 and (G11),0 

and how it fulfils the above-mentioned conditions of "normal" behaviour, the rules 
which are recommended by the authors for the estimation of parameter oc, what 
possible values of limiting activity coefficients are allowed by the equation, and finally, 
its advantages and disadvantages in comparison with the equation proposed by Red
lich and Kister3

• 

The equation fo~ molar excess Gibbs energy, proposed by Renon and Prausnitz2
, 

was used in the form 

(5) 

where 

(5a) 

The ratio of activity coefficients and the higher (i.e. n ~ 2) derivatives of C§E are 
given by the relations 

In (ytf'y2 ) = 2·303Ql = T1 G1(x~ - G1xD/(x 1 G1 + x2 )
2 + 

+ TzGz(x~G2 - xi)/(x2 G2 + x1)
2

, 

0°[C§Ej(RT)]fox~ = ( -l)n+l n! [T2G~(l- G2)n- 2 /(x1 + x2 G2)n+t + 

+ T1Gi(G1 - l)n- 2/(xz + X1G 1)n+l]. 

(6) 

(7) 
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Thus for the second-order derivative of the Gibbs energy with respect to composition 
we get 

a2 [<:§j(RT)]jaxi = 2·303Gll = (x 1x2t 1 + 
-2[T2 G~j(x 1 + x 2 G2)

3 + T1 G~j(x2 + x 1G1)
3
]. 

The limiting activity coefficients are given by the relations 

lim log y1 =logy? = Ll = (T2 + T1G1)/2·303, 
Xt-+0 

lim log y2 =logy~ = L2 = (T1 + T2 G2)/2·303 . 
Xt-+1 

Calculation Procedure 

(7a) 

(B) 

(9) 

To find the effect of x0 , ( Gll )xo• and r:t. on the course of Ql(x1) and Gll(x1) two cal
culation procedures were developed. In the first one, by using the Newton method, 
the system of two non-linear equations was solved: 

-0·5 

0·5 0·5 

fiG. 1 

x. =0·3 
(G11J.

0 
=0·5 

().5 
X! 

1 2 

10 

Concentration Dependence of log ytfy2 = Ql for Different Values of x0 , (G11),0 , and ex 
1 0( = 0·1 , 2 0( = 0·3, 3 0( = 0·47. 
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(Wa) 

for chosen values {Gll)xo• x 0 , and a. 

The system of equations (10) did not provide a solution in some cases and it was not 
possible to decide whe(her this fact is caused by the non-existence of the solution 
or by an insufficiently ~exact starting estimation. For this reason the procedure 
described below was developed which is based on the solution of one non-linear 
equation. In this case it is possible to conclude more easily as to the existence of solu
tion. From Eq. (9) we get T1 = 2·303L2 - T2 G2 • By substituting this relation into 
Eq. {lOa) we obtain a non-linear equation from which we can calculate T2 for given 
values x0 , a, L2 (the method of halving the interval was used for calculating). By sub
stituting back into Eq. (9), the value T1 is obtained as well. From the obtained values 
T1, T2 and chosen a, x0 we determine the corresponding value (Gll)xo from Eq. (7a), 
too. The values of L2 were changed and in this way the dependences (G1,1)~0 = 
= f(L2) were obtained for different a, x 0 • A part of calculations is presented in Fig. 3 
and more detailed tables will be published elsewhere4

• 

FIG. 2 

Dependence of £X 1113x, o:mon• and o:. 
on x0 and (Gll)x

0 

1 (Gll)x
0 
= 0, 2 (Gll)xo = 0·25, 

3 (Gll)xo = 0·5. 
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RESULTS 

The computations carried out on the computer Hewlett-Packard 2l16B for the ranges 
(G11),

0 
E ( -0·1; 0·8), a E (0·1; 0·8) and ~ E (0; 0·45) resulted in the following 

facts: 

I. For relatively symmetric systems ( ~ < 0.2) the values of o: recommended by 
Renon and Prausnitz warrant the monotone course of Ql, i.e. fulfilling the con
dition (1). 

II. For more asymmetric systems(~ > 0·2) lower values of a, especially at higher 
values of ( G11 )xo• do not ensure the fulfilment of condition (1) and not even the con
dition (2), which is evident from Fig.l, too. The minimum values tx =a. warranting the 

FIG. 3 

Dependence of (Gll)xo on Limiting 
Activity Coefficient L2 for Different 
Values x 0 and ac 

A x 0 = 0·5, 8 x 0 = 0·25, C x 0 = 
= 0·15. 
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non-S-shaped course . of r;E and Ct. = Ct.mon warranting the monotone course of Ql(x1) 

are presented in Fig. 2 as a function of x 0 and ( Gll )xa· 

III. From Eq. (7) follows that the necessary condition for the extreme on the curve 
Ql(x 1) is the difference of signs at T1 and T2 • The composition corresponding to the 
extreme, x 1 = xE, is given by the relation 

(12) 

where K = [ -(G1/G2 )
2 TdT2]1 13

• 

If xE is from the interval (0; 1) the condition (1) will not be fulfilled and an extreme 
will be on the curve. As it follows from the Gibbs-Duhem equation, the dependences 
of activity coefficients on composition will have an extreme, too. An important 

FIG. 4 

Limiting Values of T 1 and T2 Fulfilling the Condition of Thermodynamic Stability for Different 
Values of a 
-- - The curve delimiting parameters T 1 and T2 which fulfil the conditions (Gll)x

1
=xa = 0, 

{Gil I 1),
1 

= xm = 0, where xm is composition corresponding to the minimum on the curve 
GIJJJ(x 1). 
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FIG. 5 

Courses of Gll(x 1) for x0 = 0·5 and x0 = 0·15 and Different Values (Gll)xo or L2 
a x 0 = 0·5, a = 0·5: A (G11),0 = 0·251 (L2 = 1·10), 8 (G1l),0 = 0·358 (£2 = 1·35), C 

{GII),0 = 0·603 (L2 = 1·55); b x 0 = 0·15, a= 0·55: A (G1l\0 = 0·25 (L2 = 0·45), 8 (G1l),0 = 
= 0·109 (£2 = 0·75), C (Gll),0 = 0·246 (L2 = 1·30), D (Gll),0 = 0·332 (L2 = 1·60). 

FIG. 6 

Dependence of Logarithm of 
Limiting Activity Coefficient 
L1 on x 0 , a 
--- (G11),

0 
= 0, -- 

(Gll),0 = 0·5. 

06t----,!-----+----l-----t-------i 

04~--_L ___ J_ _ _ _ L---~---__j 

o m ~ m ~ ~ ~ 
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feature of the NRTL equation is the fact that this extreme can be only one, whereas 
in case of the Redlich-Kister equation with three constants two extremes may occur. 

IV. The system of equations (10) is non-linear with respect to the unknowns T1 and 
T2 for chosen x0 , ex, ( Gll )xo and the number of solutions cannot be defined generally. 
In some cases the solution of the system ofequations (10) was not found at all. 
With a symmetrical system even three different solutions were found. Graphic 
insight can be obtained from Figs 3a- 3c in which several dependences of ( Gll ),

0 

on L2 are plotted for x 0 = 0·5, 0·25, 0·15 and for different ex. 

V. It is evident from the course of curves in Fig. 3 that there exists a certain maxi
mum value ex = rxmax for a given value x 0 which allows to reach the given value 
of (Gll)xo (Fig. 2). With a symmetrical system for (Gll)xo = 0 e.g. et.max = 0-427 7 

(this value is somewhat higher than that given by the authors of equation). 

VI. The range of applicable values of ex depends considerably on ~ and on£ Gll )xo 
and they can be read from Fig. 2. For ~ = 0·35 (x0 = 0·15 or 0·85), (Gll)xq = 0 
and a monotone course of Ql(x1), ex E <0·36; 0·52) is at our disposal, whereas for 
~ = 0·4 only ex E <0·62; 0·69), i.e. the values far higher than those usually recom
mended. 

VII. For the minimum on the curve (G11)xo- L2 the relation holds 

D = j a6tlfoT1 

aGt11foT1 

aGujar2,_ 
oG11tJar2 - 0 

· 
(12) 

The derivatives in the last relation are considered at the point corresponding to the 
minimum. The determinant D has a value D = 12 for the Redlich-Kister equation 
(T1 = b, T2 =c) and consequently the minimum cannot occur. On using the Newton 
method to solve the system of equations (10), the determinant of the system of equa
tions just equals the determinant D and therefore the use of the Newton method 
in the vicinity of minimum requires multiple precision computation and at the mrni
mum is inapplicable at all. 

VIII. When correlating measured data e.g. q;E = q;E(x1) for strongly non-ideal 
systems, we can sometimes obtain such T1 , T2 which, in a certain concentration 
range, do not fulfil the conditions of thermodynamic stability. It is possible to make 
sure whether it is so in Fig. 4 in which the region of parameters T1 and T2 , cor
responding to homogeneous and heterogeneous systems, is delimited for different ex. 
We emphasize that the use of ex > rxmax does not warrant the condition of thermo
dynamic stability in the entire concentration range but only at x 1 = x0 and in a cer
tain vicinity of the point. 

IX. For a symmetrical system (T1 = T2 , x 0 = 0·5) the fulfilment of the condition 
(3) implicates the occurrence of only one minimum on the curve Gll(x1). Let us 
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consider the curve oc = 0·5 in Fig. 3a. With increasing L2 the value of (G11)xo de
creases first as far as the minimum is attained at L2 = 1·1 and then increases again. 
With increasing L2 G1111 diminishes as well and at L2 = 1·15 takes its zero value. 
Accordingly at this point holds (Gll)xo = 0·26; (G111)x,=xo = 0 = (G1111)x, =xo· 

· The NRTL equation also gives the zero value of all odd derivatives of C§ for sym
metrical systems and because (86C§/i7xnx, =o·s < 0, the minimum at x 1 = 0·5 changes 

,to the maximum. For higher values of L2 and accordingly also of (Gl1).
0 

already 
Gllll < 0 and the maximum at x0 becomes more expressive and is accompanied 
with two symmetrically placed minima which with the increasing value of L2 and 
consequently also ( Gll )xo shift to the concentratiG>n ends, become deeper and can 
reach even negative values (Fig. 5a ). 

X. As to the systems with x 0 = 0·5, the curve G1111 = 0 ceases being coincident 
with the curve delimiting the existence of one minimum on the curve G11(x1) (Figs 
3a-3c and 4a, 4b). As to the systems with~> 0·31, Gllll < 0 in a certain interval 
in all cases and the condition (3) is not therefore fulfilled. The curve delimiting the 
occurrence of one minimum on the curve Gll(x 1) shifts to lower values of L2 with 
increasing value of~. (Figs 3a and 3c.) 

FIG. 7 

Dependence of Logarithm of 
Limiting Activity Coefficient 
L2 on x 0 , ex 
-- (Gll)x

0
= 0,--

(G1l)x0 = 0·5. 
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TABLE I 

Dependence of Ll on £2 and (G11),
0

=o. 5 

£2 
(Gl1).

0 

L1 

0·75 
0·109 (minimum) 
1·40 

1·0 
0·152 
1·43 

1·3 
0·246 
1·42 

Novak, Suska, Matous: 

1·6 
0·332 
1·38 

XI . The values of limiting activity coefficients L1 and L2 or of their logarithms 
as a function of x 0 and a for (Gll)xa = 0 and 0·5 are given in Figs 6 and 7. More 
detailed tables are ·presented elsewhere4

. When constructing the graphs, only the 
downward part of curves was considered in Figs 3a-3c to make the unique attach
ment of values of Li and ( Gll )xa possible. It follows from the calculations that in case 
of asymmetrical systems when overpassing the minimum on the curves ( Gll );a -;- L2, 
the values Ll change only little as it is seen in Table I (x0 = 0·15, a = 0·55; compare 
with Figs 3c and Sb ). Thus the Ll in Fig. 6 calculated for a = 1Xmax can be considered 
practically to be the maximum values of Ll. The maximum possible values of Ll 
with a homogeneous system for ~ < 0·2 are approximately 0·13 higher than those 
allowed by the Redlich-Kister equation with three constants. The greatest advantage 
of the NRTL equation in comparison with the Redlich-Kister one is the fact that 
it can be used even at~ > 0·2 where the Redlich-Kister equation with three constants 
fails practically wholly. 

XII. If we know x 0 and ( Gll )xa for a system (these values can be determined from 
literature data5

-
9

) it is possible to estimate the value of parameter et. (ref.4
) from the 

values of Ll and L2 by means of Figs 6 and 7. 

XIII. As to the systems which show small deviations from Raoult's law, the effect 
of parameter ex is relatively small except the immediate proximity of the minimum 
on the curve (Gll)xa-;- L2. 

The authors thank Dr P. Voiika and Dr A. Malijevsky for their suggestive advice and comments 
and valuable discussions. 

LIST OF SYMBOLS 

'§ molar Gibbs energy 
'§E molar excess Gibbs energy 
G1, G2 quantities defined in Eq. (5a) 
Gll (Gill etc.) second, (third etc.) derivative of molar Gibbs energy with respect to composition, 

divided by 2·303 RT 
Li = log yp decadic logarithm of the limiting activity coefficient of the component i 
(Gll)xo ordinate of the minimum on the curve Gll(x0 ) 

Q = '§E j2·303RT dimensionless wolar excess Gibbs energy 
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Ql (Ql1 etc.) first (second) derivative ofQ with respect to composition 
R universal gas constant 
T absolute temperature 
T 1, T2 empirical parameters of the NRTL equation 
X; mole fraction of the component i 
x 0 ordinate of the minimum of the curve Gl1(x1 ) 

IX empirical parameter of the NRTLequation 
1Xmon• IXmax, IX5 limiting values of parameter IX defined in the text 
Y; activity coefficient of component i 
Y? limiting values of the activity coefficient of component i 
.; = 10·5 - x 0 1 modified concentration parameter 
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